Multiple Choice

1 (A)
$$4-x > 0, : x < 4$$

2 (D)
$$(2x)^2 = x(x+9)$$

3 (C)
$$\frac{\frac{1}{2}}{1+\frac{x^2}{4}}$$

- 4 (B) Guide graph is $y = x^{2}(x^{2} 1)$
- 5 (A) $x = 2\cos \pi t$ has period 2, amplitude 2

6 (B)
$$\sin 2x = 2\sin x \cos x = 2 \times \frac{1}{4} \times -\frac{\sqrt{15}}{4}$$
 (2nd quad, $\cos x < 0$)

- 7 (C) Product of roots = $-1 \times \alpha \beta = -1$, $\therefore \beta = \frac{1}{\alpha}$
- 8 (A) 6 letters including 2 Ps and 3 Ls together which count as 1 letter.

9 (D)
$$\cos^{-1}(-\sin x) = \pi - \cos^{-1}(\sin x)$$

= $\pi - \left(\frac{\pi}{2} - x\right)$
= $\frac{\pi}{2} + x$, for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

10 (B) Only at (-1,-1) and a point where x > 0, y > 0 as the curve $f(x) = -\sqrt{1 + \sqrt{1 + x}}$ starts at (-1,-1) and is monotonic decreasing, $\therefore f^{-1}(x)$ starts at (-1,-1) and is monotonic increasing.

Question 11

(a)
$$m_1 = 3, m_2 = \frac{1}{2}, \therefore \tan \theta = \frac{3 - \frac{1}{2}}{1 + \frac{3}{2}} = 1, \therefore \theta = \frac{\pi}{4}.$$

(b)
$$\frac{x}{x+1} < 2$$

 $x(x+1) < 2(x+1)^2$
 $(x+1)(2x+2-x) > 0$
 $(x+1)(x+2) > 0$
 $x < -2$ or $x > -1$

- (c) $\angle ACB = 90^{\circ}$ (semi-circle angle) $\angle CAB = \angle BCD$ (angles in alternate segments) $\therefore \triangle ABC \parallel \triangle BCD$ (AA) $\therefore \angle ABC = \angle CBD$ (corresponding angles in similar \triangle s)
- (d) By long division,

$$x^{3} + 2x^{2} - 3x - 7 = (x - 2)(x^{2} + 4x + 5) + 3$$

$$\therefore Q(x) = x^{2} + 4x + 5.$$

(e)
$$\int 2\sin^2 4x dx = \int (1-\cos 8x) dx = x - \frac{\sin 8x}{8} + C.$$

(f) (i)
$$0.95^8 \approx 0.66$$

(ii) $Pr(\text{at least 2}) = 1 - Pr(x = 0,1)$
 $= 1 - 0.95^8 - {}^8C_1(0.05)(0.95)^7$
 ≈ 0.057 .

[Terry Lee]

Ouestion 12

(a)
$$\frac{dA}{dt} = \frac{dA}{dB}\frac{dB}{dt} = -\frac{9}{B^2} \times 0.2 = -\frac{1.8}{\left(\frac{9}{12}\right)^2} = -3.2 \text{ ms}^{-1}$$

(b) (i)
$$x = 2\sqrt{2}\cos\left(3t - \frac{\pi}{3}\right)$$

(ii)
$$x = 2\sqrt{2}, -2\sqrt{2}$$
.

(iii)
$$\dot{x} = -6\sqrt{2}\sin\left(3t - \frac{\pi}{3}\right)$$

When
$$\sin\left(3t - \frac{\pi}{3}\right) = -\frac{1}{2}$$
,

$$3t - \frac{\pi}{3} = -\frac{\pi}{6}$$

$$3t = \frac{\pi}{6}$$

$$t = \frac{\pi}{18}$$
 is the first time.

(c) The tangent at P is $y = px - ap^2$.

Substituting x = 0 gives $y = -ap^2$, $\therefore R(0, -ap^2)$.

$$SR = a - (-ap^2) = a + ap^2$$
.

$$SP = PM$$
 (by definition)

$$=ap^{2}-(-a)=ap^{2}+a.$$

$$\therefore SR = SP,$$

 $\therefore \Delta SRP$ is isosceles.

$$\therefore \angle SPR = \angle SRP.$$

(d) (i)
$$T = 3 + Ae^{kt}$$
, $\therefore \frac{dT}{dt} = kAe^{kt} = k(T-3)$.

(ii) Sub.
$$t = 0, T = 30$$
 gives $30 = 3 + A$, $A = 27$.

Sub.
$$t = 15, T = 28$$
 gives $28 = 3 + 27e^{15k}, \therefore k = \frac{\ln \frac{25}{27}}{15}$

Sub.
$$t = 60, T = 3 + 27e^{4\ln\frac{25}{27}} = 22.8^{\circ}$$

Question 13

(a)
$$u = \cos^2 x$$
, $du = -2\cos x \sin x dx = -\sin 2x dx$.

When
$$x = 0, u = 1$$
. When $x = \frac{\pi}{4}, u = \frac{1}{2}$.

$$\int_{0}^{\frac{\pi}{4}} \frac{\sin 2x}{4 + \cos^{2} x} dx = \int_{1}^{\frac{1}{2}} \frac{-du}{4 + u} = \left[\ln(4 + u) \right]_{\frac{1}{2}}^{1} = \ln \frac{10}{9}.$$

(b)
$${}^{20}C_{k}5^{k}2^{20-k} = {}^{20}C_{k+1}5^{k+1}2^{19-k}$$
.

$$\frac{20! \times 2}{k!(20-k)!} = \frac{20! \times 5}{(k+1)!(19-k)!}$$

$$2(k+1) = 5(20-k)$$

$$7k = 98$$

$$k = 14$$

(c) (i)
$$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -2e^{-x}$$
.

$$\frac{1}{2}v^2 = 2e^{-x} + C$$

Sub.
$$x = 0, v = 2$$
 gives $C = 0$.

$$\therefore v^2 = 4e^{-x}.$$

$$\therefore v = 2e^{-\frac{x}{2}}, \text{ noting initially } v > 0.$$

(ii)
$$\frac{dx}{dt} = 2e^{-\frac{x}{2}}$$

$$\int_0^x e^{\frac{x}{2}} dx = 2 \int_0^t dt$$

$$2\left(e^{\frac{x}{2}}-1\right)=2t.$$

$$e^{\frac{x}{2}} = t + 1.$$

$$\therefore x = 2 \ln(t+1)$$

(d) (i) At
$$A, y = -x$$
.

$$18\sqrt{3}t - 5t^2 = -18t$$
.

$$\therefore t = \frac{18\left(\sqrt{3} + 1\right)}{5}.$$

$$\therefore OA = \sqrt{2}x = 18\sqrt{2}t = \frac{324\sqrt{2}(\sqrt{3}+1)}{5}$$

(ii)
$$\dot{x} = 18$$
,

$$\dot{y} = 18\sqrt{3} - 10t = 18\sqrt{3} - 2 \times 18(\sqrt{3} + 1) = -18(\sqrt{3} + 2)$$

$$\tan \alpha = \frac{-18(\sqrt{3}+2)}{18} = -(\sqrt{3}+2).$$

$$\alpha = -75^{\circ}$$

:. It makes an angle of 30° with the sloping plane.

Ouestion 14

(a) Let n = 1, LHS = 1(1!) = 1, RHS = 2!-1=1.

 \therefore true when n = 1.

Assume 1(1!) + 2(2!) + ... + n(n!) = (n+1)! -1.

RTP 1(1!) + 2(2!) + ... + (n+1)(n+1)! = (n+2)! - 1.

LHS = (n+1)! - 1 + (n+1)(n+1)!

$$=(n+1)!(n+1+1)-1$$

$$=(n+2)!-1=RHS.$$

 \therefore True for all $n \ge 1$ by the principle of Math Induction.

(b) (i)

As seen from the diagram, the 2 curves meets only once,

$$\therefore x^2 = \frac{1}{x - k}$$
 has only one real zero.

$$\therefore x^3 - kx^2 - 1 = 0$$
 has only one real zero.

(ii) Let
$$f(x) = x^3 - kx^2 - 1$$
.

$$f'(x) = 3x^2 - 2kx$$
.

$$f(k) = k^3 - k^3 - 1 = -1$$

and
$$f'(k) = 3k^2 - 2k^2 = k^2$$
.

$$x_2 = k - \frac{f(k)}{f'(k)}$$

$$=k+\frac{1}{k^2}.$$

(iii) Consider the graph of $f(x) = x^3 - kx^2 - 1$.

By Newton's method, the next approximation is found when the tangent to the curve at the previous approximation meets the *x*-axis.

From the diagram, as the curve is concave up at the neighbourhood of $x = \alpha$, $x_1 < \alpha < x_2$.

(c) (i) As the 2 curves have a common tangent at x_0 , they have same gradient at $x = x_0$.

$$\therefore \cos x_0 = \cos(x_0 - \alpha).$$

(ii) Solving $\cos x_0 = \cos(x_0 - \alpha)$ gives

$$x_0 = -x_0 + \alpha$$
 (ignore $+2k\pi$, as $x_0 < \frac{\pi}{2}$. Also

ignore $x_0 - \alpha$ as this is absurd)

$$\therefore \sin x_0 = \sin(-x_0 + \alpha)$$

$$=-\sin(x_0-\alpha).$$

(iii) From
$$x_0 = -x_0 + \alpha$$
 we have $x_0 = \frac{\alpha}{2}$.

$$k + \sin(x_0 - \alpha) = \sin x_0.$$

$$k = \sin x_0 - \sin(x_0 - \alpha)$$

$$= 2 \sin x_0$$

$$=2\sin\frac{\alpha}{2}$$
.